
Eur. Phys. J. B 27, 147–152 (2002)
DOI: 10.1140/epjb/e20020139 THE EUROPEAN

PHYSICAL JOURNAL B
c©

EDP Sciences
Società Italiana di Fisica
Springer-Verlag 2002

Scaling behaviour of the relaxation in quantum chains

D. Karevskia
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Abstract. We consider the nonequilibrium time evolution of the transverse magnetization in the critical
Ising and XX quantum chains. For some inhomogeneously magnetized initial states we derive analytically
the transverse magnetization profiles and show that they evolve into scaling forms in the long-time limit.
In particular it is seen that the Ising chain exhibits some similarities with the conserved dynamics XX
chain. That is, after a transient regime, the total residual magnetization in the transverse direction is also
conserved in the Ising case. A class of general initial states is also considered.

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling,
etc.) – 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.30-d Quantum statistical mechanics

1 Introduction

Nonequilibrium properties of quantum systems have at-
tracted a lot of interest since they have natural dynam-
ics in contrast to classical ones and since classical effects
are actually quantal. There are several ways to consider
nonequilibrium quantum systems. One is to couple the
quantum mechanical system to a heat bath which can be
itself described quantum mechanically [1]. In this case, a
part of the whole system is isolated and called ‘the system’
while the rest is supposed to describe a certain environ-
nement with which the system interacts and dissipates
through. Another route is to impose a current on the sys-
tem and investigate the steady states [2]. Still an other
possibility is simply to investigate the relaxation of an
initial state, in which the system has been prepared, and
evaluate expectation values of observables at later times.
This was done recently [3] on the XX-quantum chain with
a step-like magnetization initial state. More recently in ref-
erence [4], the relaxation of spatially inhomogeneous ini-
tial states has been treated for several variants of the XY
quantum model. Relaxation phenomena at zero tempera-
ture with homogeneous initial state has been considered
in references [5,6] for the XX and Ising chains in a trans-
verse field in the context of aging.

In this work we study the nonequilibrium profiles of
the critical Ising and XX quantum chains. We suppose
that at the initial time t = 0 the system is prepared in
a given state |Ψ〉. The time evolution of the system is
entirely governed by the Schrödinger equation and is for-
mally given by

|Ψ(t)〉 = exp(−iHt)|Ψ〉 (1)
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since the systems under consideration are closed. The
basic quantity we calculate is the expectation value of
the local transverse magnetization at time t, m(l, t) ≡
〈Ψ(t)|σzl |Ψ(t)〉. We first consider two different initial states
|Ψ〉, a kink in the z direction, | . . . ↑↑↑↓↓↓ . . . 〉, which
was already considered in reference [3] for the quantum
XX chain, and a droplet configuration | . . . ↑↑↓ .. ↓↑↑ . . . 〉
for both Ising and XX chains. In reference [5] the cu-
mulated magnetization was calculated for the XX chain
but the profile itself was not considered. We give finally
the general expression for the relaxation of the transverse
magnetization in terms of a convolution product in the
continuum limit. The kernels of both XX and Ising chains
are readly expressed in both direct and Fourier space.

2 Basic quantities

The one dimensional Ising and XX Hamiltonians with L
sites and open boundary conditions are given by the same
one-parameter anisotropic XY Hamiltonian:

H = −1
2

L−1∑
k=1

[
1 + κ

2
σxkσ

x
k+1 +

1− κ
2

σykσ
y
k+1

]
− h

2

L∑
k=1

σzk

(2)

where the anisotropy parameter κ = 1 corresponds to
the Ising case with a Z2 symmetry and κ = 0 de-
scribes the XX-model which has U(1) symmetry. The
Hamiltonian (2) is diagonalizable through of a Jordan-
Wigner transformation, followed by a canonical transfor-
mation [7]. In terms of the Clifford operators {Γ il }, the
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Jordan-Wigner transformation is expressed as [8]

Γ 1
n = (−1)n−1

(∏n−1
j=1 σ

z
j

)
σxn

Γ 2
n = −(−1)n−1

(∏n−1
j=1 σ

z
j

)
σyn .

(3)

The generators {Γ il } satisfy

〈Γ in|Γ
j
k 〉 = δijδnk , (n, l = 1, . . . , L; i, j = 1, 2) , (4)

where we have introduced a pseudoscalar product defined
as 〈C|D〉 ≡ 1

2{C,D} with {., .} the anticommutator. The
original spin variables are obtained in terms of the Γ s by
inverting the previous relations. One obtains σxnσxn+1 =
−iΓ 2

nΓ
1
n+1, σynσ

y
n+1 = −iΓ 2

n+1Γ
1
n and σzn = −iΓ 2

nΓ
1
n , so

that (2) is written as

H=
i
4

∑
k

−Γ †k (iσy)Γk+1 + κΓ †kσ
xΓk+1−hΓ †k iσyΓk , (5)

where Γ †k = (Γ 1
k , Γ

2
k ), the hermitian conjugate of Γk, is

a 2-components spinor and σx and σy are the Pauli ma-
trices. Introducing the 2L-components Clifford operator
Γ † = (Γ †1 , Γ

†
2 , . . . , Γ

†
L), we arrive at H = (1/4)Γ †TΓ

with T† = T. The diagonalisation is then performed by
the introduction of the diagonal Clifford generators γ†q =
(γ1
q , γ

2
q ) related to the old one by Γ 1

l =
∑
q φq(l)γ

1
q and

Γ 2
l =

∑
q ψq(l)γ

2
q with real φ and ψ components. Introduc-

ing the Fermi operators ηq = 1/2(γ1
q +iγ2

q ) and the adjoint
η†q , finally one arrives at the usual free fermionic Hamilto-
nian H =

∑
q εqη

†
qηq+E0. The excitations energies εq and

the transformation coefficients φq(l), ψq(l) are solution of
the 2L × 2L eigenvalue system TVq = εqVq, with com-
ponents V †q (k) = (φq(k),−iψq(k)). The eigenvectors sat-
isfy the orthogonality relations

∑
q φq(i)φq(j) = δij and∑

q ψq(i)ψq(j) = δij .
The time evolution of the spin operators are easily ex-

pressed in terms of the time dependence of the Clifford
generators Γ (see Appendix). The basic time evolution of
the diagonal operators is γq(t) = eiHtγqe−iHt = R(εqt)γq
where R(θ) is a rotation of angle θ. In matrix form we
have (

γ1
q (t)

γ2
q (t)

)
=

(
cos εqt sin εqt

− sin εqt cos εqt

)(
γ1
q

γ2
q

)
· (6)

Using this relations, we can express the time dependence
of the Γ s through an expansion onto the basis {Γ ik}:

Γ jn(t) = eiHtΓ jne−iHt =
∑
k,i

〈Γ ik|Γ jn(t)〉 Γ ik (7)

with components

〈Γ 1
k |Γ 1

l (t)〉 =
∑
q

φq(k)φq(l) cos εqt

〈Γ 1
k |Γ 2

l (t)〉 = 〈Γ 2
l |Γ 1

k (−t)〉 = −
∑
q

φq(k)ψq(l) sin εqt

〈Γ 2
k |Γ 2

l (t)〉 =
∑
q

ψq(k)ψq(l) cos εqt . (8)

For the Ising chain, at the critical point h = 1,
the basic contractions are obtain in a closed form. For
open boundary conditions, the excitation energies εq =
2 sin(q/2) and eigenvectors φ and ψ are [9]:

φq(l) = (−1)l
2√

2L+ 1
cos q(l − 1/2)

ψq(l) = (−1)l+1 2√
2L+ 1

sin ql (9)

with q = (2p+ 1)π/(2L+ 1). In the thermodynamic limit
L → ∞, the contractions are then expressed in terms of
Bessel functions Jn(z) of integer order as [11]:

〈Γ 1
k |Γ 1

l (t)〉 = 〈Γ 2
k |Γ 2

l (t)〉 = (−1)k+lJ2(l−k)(2t)

〈Γ 1
k |Γ 2

l (t)〉 = −(−1)k+l+1J2(l−k)+1(2t) . (10)

For the XX-chain in a similar way one obtains

〈Γ 1
k |Γ 1

l (t)〉=(i)l−kJl−k(t)
{

cos(ht) ; l − k = 2p
−i sin(ht) ; l − k = 2p+ 1

〈Γ 1
k |Γ 2

l (t)〉=(i)l−kJl−k(t)
{
− sin(ht) ; l − k = 2p
−i cos(ht) ; l − k = 2p+ 1(11)

and 〈Γ 2
k |Γ 2

l (t)〉 = 〈Γ 1
k |Γ 1

l (t)〉.
In what follows we are interested in the time relaxation

of the transverse magnetization. In the Heisenberg picture,
we have, using the expansion (7), σzl (t) = −iΓ 2

l (t)Γ 1
l (t) =

−i
∑i1,i2
k1,k2〈Γ i1k1|Γ 2

l (t)〉〈Γ i2k2|Γ 1
l (t)〉Γ i1k1Γ

i2
k2. The expectation

value in the z-direction |Ψ〉 state is then

m(l, t) =
∑
k

[
〈Γ 2
k |Γ 2

l (t))〈Γ 1
k |Γ 1

l (t)〉

−〈Γ 1
k |Γ 2

l (t)〉〈Γ 2
k |Γ 1

l (t)〉
]
〈Ψ |σzk|Ψ〉 (12)

since only the terms 〈Ψ |Γ 2
kΓ

1
k |Ψ〉 are non-vanishing in the

state |Ψ〉.

3 Kink-like initial state

We consider first the initial state with a kink located at
the origin

|Ψ〉 = | ↑〉⊗N/2 ⊗ | ↓〉⊗N/2
(13)

where | ↑, ↓〉 are the eigenstates of the σz Pauli matrix,
σz| ↑, ↓〉 = ±| ↑, ↓〉, and we take the thermodynamic limit
N → ∞. We present here only the results for the criti-
cal (h = 1) Ising quantum chain since the XX chain was
already considered in reference [3]. Using the previous for-
mulas (12) and (10) for the contractions, a straightforward
calculation leads to

m(l, t) = −
l−1∑
p=1−l

[(
1−

(p
t

)2
)
J2

2p(2t) + J
′

2p

2
(2t)

]
. (14)
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Now the analysis proceeds along the same lines as in ref-
erence [3]. We introduce the discrete derivative

Φ
′
n(v) ≡ −t[m(n+ 1, t)−m(n, t)]n/t=v

= −2nv [(1− v2)J2
2n(2t) + J

′

2n

2
(2t)].

(15)

For obvious symmetry reasons, we will consider only the
part v > 0 since we have m(−n, t) = −m(n, t). Due to
the different asymptotic properties of the Bessel functions
one has to distinguish between the cases v > 1 and v < 1.
For v > 1, which means that n > t, we are in the acausal
region (outside the light-cone) since the excitations, trav-
eling with velocity one [10], have no time to propagate
from the initial position of the kink to the site n. Then it
is the local environnement which completely governs the
behavior of the magnetization. That is, the magnetization
relaxes as if the initial state was the completely ordered
state and one has

m(n, t) = −1
2
− 1

4t
J1(4t) (16)

for n > t. The local magnetization reaches the constant
value −1/2 with corrections of order t−3/2 so that the
derivative Φ

′
(v) is essentially vanishing for large n. This

is exactly what is seen from the asymptotic behavior of
the Bessel functions and their derivatives, vanishing as
exp[−λ(v)n] with λ(v) > 0 [11].

Inside the light-cone (v < 1), with the help of the
asymptotics for ν � 1 [11]

Jν( ν
cosβ ) =

√
2

πν tanβ cosψ

J
′

ν( ν
cos β ) = −

√
sin 2β
πν sinψ

(17)

where ψ ≡ ν(tanβ − β)−π/4, one obtains for the deriva-
tive Φ

′
n(v):

Φ
′

n(v) = − 2
π

√
1− v2 = Φ

′
(v) (18)

which is n independent due to the exact cancellation of the
sin and cos terms in (15). Finally, by simple integration
we obtain m(n, t) = Φ(n/t) with the scaling function

Φ(v) =

 1/2 v < −1
− 1
π [v
√

1− v2 + arcsin v] −1 < v < 1
−1/2 v > 1.

(19)

This has to be compared with the XX chain result [3]
− 2
π arcsin v and ±1 outside the causal region. Contrary

to the XX chain which has a conserved dynamics (the
total z-component of the magnetization is a constant of
motion) in the Ising quantum chain there is a transient
regime where the local magnetization relaxes faster than
t−1 toward the stationary value ±1/2 and then only the
residual kink spreads as in the XX chain. The results are
shown in Figure 1 where the inset describes the initial
transient regime.
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Fig. 1. Nonequilibrium transverse magnetization scaling
function for the Ising quantum chain. The analytical expres-
sion (19) and the numerical results are indistinguishable. In
the inset, the transient regime is shown for times smaller than
t = 2. The magnetization relaxes toward the value ±1/2.

4 Droplet-like initial state

Let us consider now the following initial state

|Ψ〉 = | . . . ↑↑↑⇓↑↑↑ . . . 〉 (20)

with | ⇓〉 = | ↓〉⊗L, that is a droplet of L down spins
inside a bath of up spins, both interacting and evolving
with the quantum Hamiltonian H. This can be considered
as a toy model for a quantum system (the middle part)
coupled to some environnement (the external part), both
governed by the same microscopic interactions and one can
study how the system part relaxes due to the coupling to
the external degrees of freedom. We start with a one spin
droplet within the Ising model. In this case, using (12)
together with (20), the Ising transverse magnetization is
given by

m(l, t) =
1
2

+
1
4t
J1(4t) +

1
t
Φ
′

l(l/t) (21)

where Φ
′

l(v) is the function introduced in the previous sec-
tion. For v > 1 the magnetization is dominated by the first
two terms since then the function Φ

′

l(l/t) is exponentially
small. On the other hand for v < 1, after the faster re-
laxation toward 1/2 a scaling regime emerges for the local
excess magnetization, that is

mc(l, t) ≡ m(l, t)− 1/2 = t−1Φ
′
(
l

t

)
(22)

where Φ
′
(v) is given by (18).

More generally, for a droplet of size L, the transverse
magnetization at time t is given by

m(l, t) =
1
2

+
1
4t
J1(4t) +

1
t

L/2∑
k=−L/2

Φ
′

l−k((l − k)/t). (23)
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In the light-cone the excess magnetization is given to the
dominant order in t−1 by

mc(l, t) = t−1

∫ L/2

−L/2
Φ
′
((l − k)/t)dk =

∫ l/t+L/2t

l/t−L/2t
Φ
′
(u)du

(24)

so that finally in the scaling regime l� L we have simply

mc(l, t) =
L

t
Φ
′
(
l

t

)
= −2L

πt

√
1−

(
l

t

)2

· (25)

For l ∼ O(L), with Jn(z) ∼
√

2/πz cos(z−nπ/4−π/4) for
large z, the local magnetization excess is simply −2L/πt
plus subdominant corrections. Then the total magnetiza-
tion remaining inside the initial droplet region is

M c(t) =
∫
L

mc(l, t)dl = −2L2

πt
(26)

which is exactly what was obtained in reference [5] for the
XX quantum chain. As in the XX case, where the total
magnetization is conserved, something similar happens in
the Ising case. If one considers the total magnetization
excess at time t, given by the integral over the whole space,
we simply have a constant:∫ ∞

−∞
mc(l, t)dl ' L

∫ 1

−1

Φ
′
(v)dv = −L (27)

where −L is the residual excess magnetization after the
initial transient regime since the up(down) domain relaxes
locally toward 1/2(−1/2). This means that after the ini-
tial loss of magnetization, which takes place on micro-
scopic time scales of order t ' 1/h = 1, the dynamic
is conservative. We have a conservative deviation around
the stationary value. In fact, one can show that the local
magnetization excess satisfy a lattice continuity equation
∂tm

c(l, t)+j(l, t)−j(l−1, t) = 0, with the current density
j(l, t) given by

j(l, t) = −2
L/2∑

k=−L/2
J2(l−k)−1(2t)J2(l−k)(2t)

−J2(l−k)−2(2t)J2(l−k)+1(2t) (28)

which is related to the expectation value of Γ 2
l−1Γ

2
l ∝

σxl−1σ
y
l . In the continuum limit, the current is simply ex-

pressed as j(x, t) = x
tm

c(x, t).
Although, the total residual magnetization in the sys-

tem part was calculated in reference [5] for the XX
chain, the scaling profile was not considered. Using equa-
tions (11) and (12) we have for all values of the transverse
field h

mc(l, t) ≡ m(l, t)− 1 = −2
L/2∑

k=−L/2
J2
l−k(t). (29)
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Fig. 2. Scaling functions for the critical Ising and XX (inset)
quantum chains. The oscillations in the XX case are finite size
effects due to the initial droplet size. One can see that as the
time is increased the numerical results are closer and closer to
the analytical scaling function. This can be seen more evidently
at the boundaries v = ±1 for the Ising chain.

In the light-cone, together with the asymptotic expressions
for the Bessel functions, we obtain in the scaling regime
t > l � L

mc(l, t) =
L

t
Ψ

(
l

t

)
(30)

with the scaling function

Ψ(v) = − 2
π

1√
1− v2

· (31)

One may verify that the integral over the whole space
of the local magnetization gives back −2L as it should
be for the conserved dynamics system under considera-
tion. The scaling functions for both Ising and XX chains
are presented in Figure 2, where the analytical results are
compared with numerics.

5 General initial z-state

Clearly, for translation invariant Hamiltonians, equa-
tion (12) giving the transverse magnetization is a discrete
convolution product:

m(l, t) =
∞∑

k=−∞
Ft(l − k)S(k) = (Ft ∗ S)(l) (32)

with S(k) = 〈Ψ |σzk|Ψ〉. The kernel Ft(l) is given in the
continuum limit by Ft(l) = 1

t f( lt ) with

fκ(v) =

{
1
π

(
1− v2

)κ−1/2 |v| < 1

0 |v| > 1
(33)
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where the κ = 1 refers to the Ising case and κ = 0 to the
XX chain. The local magnetization m(x, t) = mt(v), is
then expressed as the convolution product

mt(v) = (St ∗ f)(v) (34)

with St(v) = S(tv). For the kink like initial state, we have
St(v) = −sgn(v) = 1−2H(v), where H(v) is the Heaviside
function. For the droplet-like initial state,

St(v) = 1− 2L
t

(
t

L

)
Π

(
tv

L

)
, (35)

where Π(x) is the characteristic function of the interval
[−1/2, 1/2]. In the long time limit, t� L, we have St(v) =
1 − 2L

t δ(v), so that we recover very simply the results of
the previous section.

For a general initial state in the z-direction, the Fourier
transform of equation (32) is

m̃t(q) = S̃t(q)f̃ (q) (36)

with

f̃κ(q) =
1
π

∫ 1

−1

(1− v2)κ−1/2e−2iπqvdv (37)

so that the kernels in Fourier space are simply given by

f̃0(q) = J0(2πq) (38)

for the XX chain and

f̃1(q) =
J1(2πq)

2πq
=

1
2
(
J0(2πq) + J2(2πq)

)
(39)

for the Ising chain. By inverse Fourier transform, it is pos-
sible to obtain the desired magnetization profile in direct
space. For example, if we consider the modulated initial
state S(x) = cos(2πx/L), with L � 1, we obtain in the
long time regime t� L

m(x, t) = cos(2πx/L)fκ(2πt/L), (40)

that is the modulation does not spread with time but only
the amplitude is decreasing as t−1/2−κ.

Finally, for a homogeneous initial state with S(x) =
m(0), it is easy to see that m(t) = m(0) in the XX case,
since the dynamic is conservative, and m(t) = 1/2m(0)
for the Ising chain.

6 Summary

We have calculated for the critical Ising and XX quan-
tum chains the nonequilibrium transverse magnetization
profiles for kink-like and droplet-like initial states. In both
cases at large times the magnetization profiles exhibit scal-
ing forms t−1F (l/t) which have been obtained analytically
and are in excellent agreement with the numerics. The
two systems show essentially the same features even if the

dynamics of the transverse magnetization are very differ-
ent, conservative for the XX chain and nonconservative
for the Ising model. In the Ising case there is a transient
regime where the initial magnetization relaxes toward the
homogeneously initially magnetized state stationary value
±1/2. After this initial regime, the system evolves as if
the dynamics of the residual transverse magnetization was
conservative. The long time relaxation of the transverse
magnetization starting with a general initial z-state is ex-
pressed very simply in terms of a convolution product of
the initial distribution with a response kernel fκ obtained
analytically for both XX and Ising chain.

Appendix: Time evolution

The diagonalisation of the Hamiltonian (5) leads to [8]

H = i
∑
q

εq
2
γ1
qγ

2
q . (41)

In the Fermi operator representation, with ηq = 1/2(γ1
q +

iγ2
q ) and η†q the hermitian conjugate, one obtains H =∑
q εqη

†
qηq−(1/2)

∑
q εq. The time evolution of the Clifford

operators is given by U†q (t)γqUq(t) with

Uq(t) = exp
(
εqt

2
γ1
qγ

2
q

)
= cos

εqt

2
+ γ1

qγ
2
q sin

εqt

2
, (42)

which leads to equation (6). Since {γiq, γjq′} = 2δijδqq′ ,
we can write equivalently for equation (6) γiq(t) =∑2
j=1〈γjq |γiq(t)〉γjq , where the symbol 〈.|.〉 means the half

of the anticommutator.
The time evolution of the Γ s is then expressed as

Γ 1
k (t) =

∑
q

φq(k) cos(εqt)γ1
q + φq(k) sin(εqt)γ2

q (43)

and

Γ 2
k (t) =

∑
q

−ψq(k) sin(εqt)γ1
q + ψq(k) cos(εqt)γ2

q (44)

with initial values Γ 1
k (0) =

∑
q φq(k)γ1

q and Γ 2
k (0) =∑

q ψq(k)γ2
q . Reinjecting in this expressions the inverse

transforms γ1
q =

∑
k φq(k)Γ 1

k and γ2
q =

∑
k ψq(k)Γ 2

k one
finally arrives at equations (7) with components (8).

Formally, since the anticommutators {Γ ik, Γ
j
l } =

2δijδkj are all proportional to the identity operator, the
set {Γ ik} forms an orthonormal basis of a 2L-dimensional
linear vector space E with inner product defined by 〈.|.〉 ≡
1
2{., .}. Hence, every vector X ∈ E has a unique expansion
X =

∑
i,k〈Γ ik|X〉Γ ik. The string expression X1X2...Xn,

with Xj ∈ E , is a direct product vector of the space
E1 ⊗ E2 ⊗ ...⊗ En which decomposition is

X1X2...Xn =
∑

i1,k1,...,in,kn

〈Γ i1k1
|X1〉...〈Γ inkn |Xn〉Γ i1k1

...Γ inkn .

(45)
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Using this formalism, the local magnetization at time t is
given by

σzl (t) = −iΓ 2
l (t)Γ 1

l (t)

= −i
∑

i1,k1,i2,k2

〈Γ i1k1
|Γ 2
l (t)〉〈Γ i2k2

|Γ 1
l (t)〉Γ i1k1

Γ i2k2
(46)

which is our starting point. One has then to consider the
simple time-independent expectation values 〈Ψ |Γ i1k1

Γ i2k2
|Ψ〉,

which are easily obtained in the spin basis using the
Jordan-Wigner expressions (3).
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